miércoles, 6 de abril de 2011

formatos


Formato BMP

¿Qué es el formato BMP?
BMP es un formato de imagen estándar de Windows en ordenadores compatibles con DOS y Windows. El formato BMP admite los modos de color RGB, Color indexado, Escala de grises y Mapa de bits. Puede especificar el formato Windows u OS/2® y una profundidad de bits de hasta 32 bits por canal en la imagen. En imágenes de 4 y 8 bits que utilizan formato Windows, también puede especificar compresión RLE.
Las imágenes BMP se escriben normalmente de abajo arriba; sin embargo, puede seleccionar la opción Voltear orden de fila para escribirlas de arriba abajo. También puede seleccionar un método de codificación alternativo con sólo hacer clic en Modos avanzados. (Las opciones Voltear orden de fila y Modos avanzados son las de mayor importancia para los programadores de juegos y otros usuarios de DirectX.)
Características
Junto con el surgimiento de Windows 3 se desarrolla un nuevo formato gráfico bitmap que constituye el estándar adoptado por este entorno operativo. Nos referimos al BMP, en el cual están almacenadas las imágenes que constituyen los llamados wallpapers. Este formato guarda las imágenes descomprimidas, lo que significa mayor velocidad de carga y mayor espacio requerido. Con respecto a la resolución, cualquiera es aceptable. Las imágenes pueden ser de 1, 4, 8 y 24 bits. La estructura de los BMPs es sencilla: se trata de un header que contiene varias características de la imagen. Este header está compuesto por información acerca del tamaño, el número de colores, y una paleta de colores (si es necesario) de la imagen. A continuación del header se encuentra la información que constituye la imagen en sí. Tiene una curiosa forma de almacenarla: comienza desde la última línea inferior. Es por eso que los programas encargados de exhibir los BMPs en pantalla trazan la imagen de abajo hacia arriba. Es un formato muy utilizado en la actualidad y la mayoría de las aplicaciones lo utilizan.




Formato TIFF

TIFF (Tagged Image File Format) es un formato de fichero para imágenes.
La denominación en inglés "Tagged Image File Format" es un formato de archivo de imágenes con etiquetas. Esto se debe a que los ficheros TIFF contienen, además de los datos de la imagen propiamente dicha, "etiquetas" en las que se archiva información sobre las características de la imagen, que sirve para su tratamiento posterior.


GIF (.gif)

El formato GIF (Graphic Interchange Format) es uno de los más habituales en imágenes de mapa de bits.

Fue creado por la empresa Compuserve (uno de los principales proveedores de acceso a Internet de los Estados Unidos) en junio de 1987 con objeto de poder transferir imágenes de hasta 256 colores (8 bits) a través de líneas de datos de modo eficaz, existiendo en la actualidad dos versiones del mismo, la original GIF87a y la más reciente GIF89a.

Ambas versiones implementan una rutina de compresión sin pérdidas muy eficaz, basada en la reducción del número de colores y el uso del algoritmo LZW modificado (consistente en no detectar sólo las repeticiones de un color, sino en detectar las repeticiones de ciertas secuencias) consiguiendo de esta forma reducir los archivos a un tamaño mucho menor que otros formatos, lo que hace los ficheros GIF idóneos para su uso en Internet.

Tanto es así que todos los navegadores web actuales soportan el formato perfectamente. Por desgracia, el algoritmo LZW empleado está patentado por Unisys (que compró a Compuserve), lo que produce constantes problemas con las licencias.
CaracteristicasLa estructura de todo fichero GIF está basada en bloques, que pueden contener información diversa: una imagen, instrucciones acerca de cómo exhibirla, texto, información característica de alguna aplicación, un marcador que determina el final del archivo, comentarios (con información acerca de la imagen en cuestión), etc.


Los ficheros GIF utilizan el modo de color indexado, pudiendo trabajar con dos paletas diferentes, una global y otra local. La paleta global determina los colores de todas las imágenes almacenadas en el GIF (puede haber varias en un mismo fichero), mientras que la local determina específicamente la paleta de cada imagen del GIF (en el caso de haber una sola imagen, la única paleta disponible será la global). Se pueden alcanzar los 256 colores como máximo, pudiendo elegir entre los predefinidos (2, 4 , 8, 16, 32, 128 ó 256) o personalizados (por ejemplo, 12 colores).

La limitación principal que tiene el formato GIF es que tan solo puede manejar 256 colores, lo que hace que una imagen con más de 256 o con transiciones suaves de colores deba reelaborarse con una trama de los colores disponibles, con lo que puede perder calidad. Aunque todo depende del tipo de imagen, ya que a veces puede conseguirse un GIF fotográfico de calidad aceptable (aunque suele tener más peso que la misma imagen en formato JPG).

El formato GIF está pues especialmente indicado en imágenes con menos de 256 colores en las que muchos puntos consecutivos tengan el mismo color, se repitan secuencias de colores o contengan principalmente textos. Además, la variante GIF89a, creada en 1989, permite la creación de imágenes transparentes, de animaciones y de imágenes con entrelazado, elementos gráficos muy útiles, sobre todo en la web.
Formato de   GIF animado

Un gif animado consiste en una serie de imágenes en formato GIF89a colocadas secuencialmente, cada una de las cuales se muestra en pantalla durante un intervalo de tiempo determinado.



Cada imagen de la animación se suele conocer con el nombre de fotograma o frame, por semejanza con los fotogramas que forman una película, y puede tener definido un color de su paleta como transparente.


Una secuencia GIF animada puede mostrase una sola vez, repetirse un cierto número de veces (denominadas loop) o repetirse indefinidamente (loop infinito).
Se construyen con programas específicos para ello (Adobe ImageReady, Microsoft GIF Animator, Ulead Gif animator, Animagic, GIF Construction Set, etc.) o con aplicaciones gráficas que implementan esta utilidad, como Paint Shop Pro, Xara o Macromedia Fireworks, y se insertan en las páginas web como una imagen cualquiera, mediante la etiqueta IMG del lenguaje HTML.
Características Los GIFs animados son soportados por todos los navegadores web, por lo que son muy indicados en este medio, teniendo siempre en cuenta que al tratarse de un formato de mapa de bits, si la animación es muy grande, larga o compleja, el tamaño del fichero resultante puede ser excesivo para que sea práctico.
Uno de los usos más corrientes de las animaciones GIF en las páginas web es la creación de los típicos banners publicitarios, equivalentes en este medio a las vallas publicitarias tradicionales
Formato  JPEG (.jpg / .jpeg)

JPEG es, junto con GIF, uno de los formatos estándares en las páginas web, lo que ha hecho que su uso se haya disparado enormemente. Sus ficheros son válidos tanto para PC como para MAC, es soportado por los navegadores más importantes (Internet Explorer y Netscape Navigator) y puede trabajar en Escala de grises, RGB y CMYK.



Este formato de mapa de bits fue desarrollado por el Joint Photographic Experts Group, asociación de fotógrafos profesionales de Estados Unidos que buscaba un formato gráfico que permitiera el almacenamiento de imágenes fotográficas de calidad con unos pesos de fichero configurable y relativamente bajo.

Este objetivo lo consigue usando el algoritmo de compresión con pérdidas JPEG, basado en el hecho de que el ojo humano no es perfecto y no es capaz de captar toda la información que se puede almacenar el una imagen de 24 bits. El formato JPEG intenta eliminar la información que el ojo humano no es capaz de distinguir, consiguiendo con ello factores de compresión cercanos a 20:1 sin pérdida apreciable de calidad (puede llegar hasta 100:1 y más). Este algoritmo es además configurable, por lo que podemos elegir cuanta compresión queremos dar al fichero. Lógicamente, cuanto más grande sea ésta, menos calidad tendrá la imagen final.

La sobrecompresión produce muestras de color borrosas, así como una imprecisión en las zonas de mayor contraste. Un indicador directo de la sobrecompresión es la presencia de áreas grises alrededor del texto negro sobre fondo blanco. Experimentando con el grado de compresión, podremos llegar a un porcentaje que suponga el mejor compromiso entre calidad y tamaño de fichero. Los programas gráficos permiten esta optimización de forma interactiva, mostrando una simulación del resultado con cada grado de compresión aplicado.


Una desventaja de trabajar con este formato es que las imágenes siempre sufren algún tipo de pérdida, por lo que nunca vuelven a tener la calidad original. Por ello es conveniente que una vez escaneada la imagen se almacene una copia en algún formato que permita compresión sin pérdidas, como BMP, con lo que dispondremos de la imagen almacenada con su máxima calidad.

Si se abre un archivo JPEG, se modifica y luego se guarda de nuevo como JPEG, se producirá una nueva compresión del fichero, lo que provocará una apreciable degradación del archivo. Por esta razón es conveniente realizar las modificaciones necesarias en la imagen original antes de guardarla en formato JPEG.

El archivo JPEG se comprime al guardarlo en disco, pero debe ser descomprimido para utilizarlo en una aplicación. Esto significa que la cantidad de memoria que se necesita para manejar la imagen puede ser mayor que el tamaño del archivo guardado en varios órdenes de magnitud. Un archivo JPEG de 1 Mb puede descomprimirse fácilmente en una imagen de 100 Mb. Por eso, al abrir archivos JPEG, se produce una reducción en las prestaciones debido al tiempo requerido para procesar la compresión y la descompresión.

JPEG es un formato especialmente adecuado para imágenes con muchos colores y con gradaciones de tonos (imágenes de tono continuo), como las fotografías o las digitalizaciones de alta calidad. Se usa para almacenar imágenes de tipo vectorial o dibujos sencillos se observará como la compresión disminuye enormemente y las modificaciones hechas sobre la imagen original son apreciables a simple vista.

En el caso de imágenes a color trabaja con profundidades de color de 24 bits separados en tres canales (RGB), por lo que permite casi 16,8 millones de colores (color verdadero). En el caso de imágenes en escala de grises trabaja con un solo canal de 8 bits.

No permite el uso de transparencias (no maneja canales alfa) ni animaciones, pero sí que permite el uso de compresión progresiva, que muestra la imagen gradualmente, mientras la descarga el explorador Web, utilizando series de lecturas para mostrar versiones cada vez más detalladas de toda la imagen, hasta que se han descargado todos los datos. Con ello se obtiene un efecto similar al entrelazado de los ficheros GIF.

Ejemplo de JPEG progresivo en
esta ventana.

formato PNG (.png)

El formato PNG (Portable Network Graphic) es un formato de mapa de bits de libre distribución, válido para PC y MAC, desarrollado para su uso en la web como alternativa a los formatos GIF y JPG, sobre todo al primero de ellos, propiedad de la empresa Unisys Corporation, más simple y menos completo


Características
PNG utiliza un esquema de compresión sin pérdidas para reducir el tamaño del archivo, manteniendo intacta la calidad original de la imagen.

Puede trabajar en modo Escala de Grises (con un canal alfa), en modo Color Indexado (8 bits, hasta 256 colores, paletas de colores) y en modo RGB (24 bits, 16,8 millones de colores y 48 bits, con 24 bits para canales alfa), por lo que admite 256 niveles de transparencia.

Las transparencias conseguidas con PNG son de mayor calidad que las puede conseguir el formato GIF, ya que, al trabajar con muchos más colores, genera transparencias de fondo sin bordes dentados.

También permite imágenes entrelazadas (de visualización progresiva) y detección de errores, pero no implementa animaciones, punto en el que se encuentra en desventaja respecto al formato GIF.

Según sus desarrolladores, un archivo PNG que almacene la información en 8 bits tiene un tamaño de 10 a 30 veces menor que un GIF con las mismas características, siendo a la vez capaz de almacenar con 48 bits imágenes en color real con transparencias, de calidad igual o mayor que sus equivalentes en formato JPEG.

Sin embargo, en la práctica el formato PNG adolece de bastantes errores. En general, los ficheros PNG tienen un tamaño mayor que sus equivalentes en GIF o JPEG, en imágenes de pocos colores cambia a veces alguno de ellos inexplicablemente, aspecto muy negativo, sobre todo cuando el color afectado es el de fondo.

Es de suponer que en un futuro, y puesto que cuenta con el apoyo del W3C, el formato PNG consiga una elevada calidad en todo tipo de imágenes para la web, con ficheros de peso reducido y sin errores en la interpretación del color. Mientras tanto, los diseñadores web siguen utilizando preferentemente GIF y JPEG.

    






martes, 29 de marzo de 2011

bachillerato instituto queretano la enrgia nuclear


La Energía nuclear

La energía nuclear procede de reacciones de fisión o fusión de átomos en las que se liberan gigantescas cantidades de energía que se usan para producir electricidad.
En 1956 se puso en marcha, en Inglaterra, la primera planta nuclear generadora de electricidad para uso comercial. En 1990 había 420 reactores nucleares comerciales en 25 países que producían el 17% de la electricidad del mundo.
En los años cincuenta y sesenta esta forma de generar energía fue acogida con entusiasmo, dado el poco combustible que consumía (con un solo kilo de uranio se podía producir tanta energía como con 1000 toneladas de carbón). Pero ya en la década de los 70 y especialmente en la de los 80 cada vez hubo más voces que alertaron sobre los peligros de la radiación, sobre todo en caso de accidentes. El riesgo de accidente grave en una central nuclear bien construida y manejada es muy bajo, pero algunos de estos accidentes, especialmente el de Chernóbil (1986) que sucedió en una central de la URSS construida con muy deficientes medidas de seguridad y sometida a unos riesgos de funcionamiento alocados, han hecho que en muchos países la opinión pública mayoritariamente se haya opuesto a la continuación o ampliación de los programas nucleares. Además ha surgido otro problema de difícil solución: el del almacenamiento de los residuos nucleares de alta actividad. 
Obtención de energía por fisión nuclear convencional.
El sistema más usado para generar energía nuclear utiliza el uranio como combustible. En concreto se usa el isótopo 235 del uranio que es sometido a fisión nuclear en los reactores. En este proceso el núcleo del átomo de uranio (U-235) es bombardeado por neutrones y se rompe originándose dos átomos de un tamaño aproximadamente mitad del de uranio y liberándose dos o tres neutrones que inciden sobre átomos de U-235 vecinos, que vuelven a romperse, originándose una reacción en cadena.
La fisión controlada del U-235 libera una gran cantidad de energía que se usa en la planta nuclear para convertir agua en vapor. Con este vapor se mueve una turbina que genera electricidad.
El mineral de uranio se encuentra en la naturaleza en cantidades limitadas. Es por tanto un recurso no renovable. Suele hallarse casi siempre junto a rocas sedimentarias. Hay depósitos importantes de este mineral en Norteamérica (27,4% de las reservas mundiales), África (33%) y Australia (22,5%). 
El mineral del uranio contiene tres isótopos: U-238 (9928%), U-235 (0,71%) y U-234 (menos que el 0,01%). Dado que el U-235 se encuentra en una pequeña proporción, el mineral debe ser enriquecido (purificado y refinado), hasta aumentar la concentración de U-235 a un 3%, haciéndolo así útil para la reacción.
El uranio que se va a usar en el reactor se prepara en pequeñas pastillas de dióxido de uranio de unos milímetros, cada una de las cuales contiene la energía equivalente a una tonelada de carbón. Estas pastillas se ponen en varillas, de unos 4 metros de largo, que se reúnen en grupos de unas 50 a 200 varillas. Un reactor nuclear típico puede contener unas 250 de estas agrupaciones de varillas.
Producción de electricidad en la central nuclear
Una central nuclear tiene cuatro partes: 
  1. El reactor en el que se produce la fisión
  2. El generador de vapor en el que el calor producido por la fisión se usa para hacer hervir agua
  3. La turbina que produce electricidad con la energía contenida en el vapor
  4. El condensador en el cual se enfría el vapor, convirtiéndolo en agua líquida.
La reacción nuclear tiene lugar en el reactor, en el están las agrupaciones de varillas de combustible intercaladas con unas decenas de barras de control que están hechas de un material que absorbe los neutrones. Introduciendo estas barras de control más o menos se controla el ritmo de la fisión nuclear ajustándolo a las necesidades de generación de electricidad.
En las centrales nucleares habituales hay un circuito primario de agua en el que esta se calienta por la fisión del uranio. Este circuito forma un sistema cerrado en el que el agua circula bajo presión, para que permanezca líquida a pesar de que la temperatura que alcanza es de unos 293ºC.
Con el agua del circuito primario se calienta otro circuito de agua, llamado secundario. El agua de este circuito secundario se transforma en vapor a presión que es conducido a una turbina. El giro de la turbina mueve a un generador que es el que produce la corriente eléctrica.
Finalmente, el agua es enfriada en torres de enfriamiento, o por otros procedimientos.
Ilustración 1 Esquema del funcionamiento de una central nuclear
Medidas de seguridad
En las centrales nucleares habituales el núcleo del reactor está colocado dentro de una vasija gigantesca de acero diseñada para que si ocurre un accidente no salga radiación al ambiente. Esta vasija junto con el generador de vapor están colocados en un edificio construido con grandes medidas de seguridad con paredes de hormigón armado de uno a dos metros de espesor diseñadas para soportar terremotos, huracanes y hasta colisiones de aviones que chocaran contra él.
Repercusiones ambientales de la energía nuclear
Una de las ventajas que los defensores de la energía nuclear le encuentran es que es mucho menos contaminante que los combustibles fósiles. Comparativamente las centrales nucleares emiten muy pocos contaminantes a la atmósfera.
Los que se oponen a la energía nuclear argumentan que el hecho de que el carbón y, en menor medida el petróleo y el gas, sean sucios no es un dato a favor de las centrales nucleares. Que lo que hay que lograr es que se disminuyan las emisiones procedentes de las centrales que usan carbón y otros combustibles fósiles, lo que tecnológicamente es posible, aunque encarece la producción de electricidad.Descripción: Subir al comienzo de la página
Problemas de contaminación radiactiva
En una central nuclear que funciona correctamente la liberación de radiactividad es mínima y perfectamente tolerable ya que entra en los márgenes de radiación natural que habitualmente hay en la biosfera.
El problema ha surgido cuando han ocurrido accidentes en algunas de las más de 400 centrales nucleares que hay en funcionamiento. Una planta nuclear típica no puede explotar como si fuera una bomba atómica, pero cuando por un accidente se producen grandes temperaturas en el reactor, el metal que envuelve al uranio se funde y se escapan radiaciones. También puede escapar, por accidente, el agua del circuito primario, que está contenida en el reactor y es radiactiva, a la atmósfera. 
La probabilidad de que ocurran estos accidentes es muy baja, pero cuando suceden sus consecuencias son muy graves, porque la radiactividad produce graves daños. Y, de hecho ha habido accidentes graves. Dos han sido más recientes y conocidos. El de Three Mile Island, en Estados Unidos, y el de Chernóbil, en la antigua URSS.Descripción: Subir al comienzo de la página
Almacenamiento de los residuos radiactivos
Con los adelantos tecnológicos y la experiencia en el uso de las centrales nucleares, la seguridad es cada vez mayor, pero un problema de muy difícil solución permanece: el almacenamiento a largo plazo de los residuos radiactivos que se generan en las centrales, bien sea en el funcionamiento habitual o en el desmantelamiento, cuando la central ya ha cumplido su ciclo de vida y debe ser cerrada.Descripción: Subir al comienzo de la página
Fusión nuclear
Cuando dos núcleos atómicos (por ejemplo de hidrógeno) se unen para formar uno mayor (por ejemplo helio) se produce una reacción nuclear de fusión. Este tipo de reacciones son las que se están produciendo en el sol y en el resto de las estrellas, emitiendo gigantescas cantidades de energía. 
Muchas personas que apoyan la energía nuclear ven en este proceso la solución al problema de la energía, pues el combustible que requiere es el hidrógeno, que es muy abundante. Además es un proceso que, en principio, produce muy escasa contaminación radiactiva. 
La principal dificultad es que estas reacciones son muy difíciles de controlar porque se necesitan temperaturas de decenas de millones de grados centígrados para inducir la fusión y todavía, a pesar de que se está investigando con mucho interés, no hay reactores de fusión trabajando en ningún sitio. 
 
Fisión nuclear del plutonio.
 
El Uranio 238, que es el principal componente del mineral uranio y además es un subproducto de la fisión del U-235, puede ser convertido en Plutonio, Pu-239, un isótopo artificial que es fisionable y se puede usar como combustible. De esta forma se multiplica por mucho la capacidad de obtener energía del uranio. Por ejemplo, si el U-238 almacenado en los cementerios nucleares de los Estados Unidos se convirtiera en plutonio, podría suministrar toda la electricidad que ese país va a necesitar en los próximos 100 años.
Pero la tecnología necesaria para este proceso tiene muchos riesgos y problemas, lo que hace que en este momento esté muy poco extendido su uso. Además, el Plutonio no se usa solo para la obtención de energía por fisión nuclear, sino que también es el material con el que se fabrican las armas nucleares, y muchos países instalarían plantas de obtención de plutonio, no para usarlo como combustible, sino, sobre todo, para fabricar armas nucleares, con el riesgo que supone la multiplicación de este tipo de armas.










                                             











Conclusiones:

1° Hemos denotado que halos ciudadanos se les debe de tener informados del uso de estas plantas como se mantienen que riesgos se pueden llegar acorrer al estar cerca de estas plantas nucleares.
2°El que estas plantas nucleares es necesario mantenerse alerta para evitar catástrofes y al mismo tiempo mantener informados halos ciudadanos de que precauciones deben de tomar al enfrentarse a este tipo de catástrofes.
3°Que el manejo de estas plantas tiene que ser el adecuado darles el mantenimiento correspondiente.
4°Que se debe de estar preparado para la radiactividad que estas causan.
5°Que el  gobierno se haga responsable de todos los daños que esta llegue acusar.
6°Que al momento que se vea afectado algún país por la radiación de estas tomen conciencia para los productos que son exportados y que si alguno de estos llegase a estar infectado se hagan responsables del daño que estos causen.






Nombres:
Mayra Liliana Mejía prado
Beatriz Martínez Ángeles

bachillerato instituto queretano la enrgia nuclear